Quasi-idempotent Rota–Baxter operators arising from quasi-idempotent elements

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idempotent Subquotients of Symmetric Quasi-hereditary Algebras

We show how any finite-dimensional algebra can be realized as an idempotent subquotient of some symmetric quasihereditary algebra. In the special case of rigid symmetric algebras, we show that they can be realized as centralizer subalgebras of symmetric quasi-hereditary algebras. We also show that the infinite-dimensional symmetric quasi-hereditary algebras we construct admit quasi-hereditary s...

متن کامل

SOS Rule Formats for Idempotent Terms and Idempotent Unary Operators

A unary operator f is idempotent if the equation f(x) = f(f(x)) holds. On the other end, an element a of an algebra is said to be an idempotent for a binary operator if a = a a. This paper presents a rule format for Structural Operational Semantics that guarantees that a unary operator be idempotent modulo bisimilarity. The proposed rule format relies on a companion one ensuring that certain te...

متن کامل

Idempotent and co-idempotent stack filters and min-max operators

Viewing the elements of R as images f with pixels i∈ S of grey-scale value f(i) motivates the study of certain nonlinear operators :R → R . For translation invariant (called stack #lters in the signal processing literature) we derive the #rst necessary and su1cient condition for idempotency which can be tested in polynomial time. Various related properties can be tested in polynomial time as we...

متن کامل

Idempotent Elements in a Bernstein Algebra

A finite-dimensional commutative algebra A over a field K is called a Bernstein algebra if there exists a non-trivial homomorphism co: A -> K (baric algebra) such that the identity (x) = CO(X)JC holds in A (see [7]). The origin of Bernstein algebras lies in genetics (see [2,8]). Holgate (in [2]) was the first to translate the problem into the language of non-associative algebras. Information ab...

متن کامل

Introduction to Asymptotically Idempotent Aggregation Operators

This paper deals with aggregation operators. A new class of aggregation operators, called asymptotically idempotent, is introduced. A generalization of the basic notion of aggregation operator is provided, with an in-depth discussion of the notion of idempotency. Some general contruction methods of commutative, asymptotically idempotent aggregation operators admitting a neutral element are illu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2016

ISSN: 0377-9017,1573-0530

DOI: 10.1007/s11005-016-0905-z